On Abelian group representability of finite groups
نویسندگان
چکیده
A set of quasi-uniform random variables X1, . . . , Xn may be generated from a finite group G and n of its subgroups, with the corresponding entropic vector depending on the subgroup structure of G. It is known that the set of entropic vectors obtained by considering arbitrary finite groups is much richer than the one provided just by abelian groups. In this paper, we start to investigate in more detail different families of non-abelian groups with respect to the entropic vectors they yield. In particular, we address the question of whether a given non-abelian group G and some fixed subgroups G1, . . . , Gn end up giving the same entropic vector as some abelian group A with subgroups A1, . . . , An, in which case we say that (A,A1, . . . , An) represents (G,G1, . . . , Gn). If for any choice of subgroups G1, . . . , Gn, there exists some abelian group A which represents G, we refer to G as being abelian (group) representable for n. We completely characterize dihedral, quasi-dihedral and dicyclic groups with respect to their abelian representability, as well as the case when n = 2, for which we show a group is abelian representable if and only if it is nilpotent. This problem is motivated by understanding non-linear coding strategies for network coding, and network information theory capacity regions.
منابع مشابه
On non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملOn $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 8 شماره
صفحات -
تاریخ انتشار 2014